Could humans one day walk on walls, like Spider-Man? A palm-sized device invented at Cornell that uses water surface tension as an adhesive1 bond粘着力 just might make it possible. The rapid adhesion支持,粘附 mechanism2 could lead to such applications as shoes or gloves that stick and unstick to walls, or Post-it-like notes that can bear loads, according to Paul Steen, professor of chemical and biomolecular生物分子的 engineering, who invented the device with Michael Vogel, a former postdoctoral associate.
The device is the result of inspiration drawn3 from a beetle4甲虫 native to产自于…… Florida, which can adhere to a leaf with a force 100 times its own weight, yet also instantly unstick itself. Research behind the device is published online Feb. 1 in Proceedings5 of the National Academy of Sciences.
The device consists of a flat plate patterned with以……图案装饰 holes, each on the order of microns微米 (one-millionth of a meter). A bottom plate holds a liquid reservoir储液器, and in the middle is another porous6 layer多孔岩层,多孔质层. An electric field applied7 by a common 9-volt battery pumps water through the device and causes droplets8飞沫,液滴 to squeeze through the top layer. The surface tension of the exposed droplets makes the device grip another surface – much the way two wet glass slides stick together.
"In our everyday experience, these forces are relatively9 weak," Steen said. "But if you make a lot of them and can control them, like the beetle does, you can get strong adhesion forces."
For example, one of the researchers' prototypes was made with about 1,000 300-micron-sized holes, and it can hold about 30 grams – more than 70 paper clips. They found that as they scaled down按比例缩小的 the holes and packed more of them onto the device, the adhesion got stronger. They estimate, then, that a one-square-inch device with millions of 1-micron-sized holes could hold more than 15 pounds.
To turn the adhesion off, the electric field is simply reversed, and the water is pulled back through the pores气孔,毛穴, breaking the tiny "bridges" created between the device and the other surface by the individual droplets.
The research builds on previously10 published work that demonstrated the efficacy of what's called electro-osmotic pumping between surface tension-held interfaces11, first by using just two larger water droplets.
One of the biggest challenges in making these devices work, Steen said, was keeping the droplets from coalescing合并,联合, as water droplets tend to do when they get close together. To solve this, they designed their pump to resist water flow while it's turned off.
Steen envisions预想,想象 future prototypes原型,雏形 on a grander scale, once the pump mechanism is perfected, and the adhesive bond can be made even stronger. He also imagines covering the droplets with thin membranes13 – thin enough to be controlled by the pump but thick enough to eliminate wetting. The encapsulated密封的 liquid could exert运用,发挥 simultaneous forces, like tiny punches冲压机,凿子.
"You can think about making a credit card-sized device that you can put in a rock fissure裂缝 or a door, and break it open with very little voltage," Steen said. "It's a fun thing to think about."