A new article published in the 29 July issue of the international journal Nature reveals for the first time that microscopic1 marine2 algae3(海藻类) known as "phytoplankton(浮游植物) " have been declining globally over the 20th century. Phytoplankton forms the basis of the marine food chain and sustains diverse assemblages(集合体,聚集物) of species ranging from tiny zooplankton(浮游动物) to large marine mammals, seabirds, and fish. Says lead author Daniel Boyce, "Phytoplankton is the fuel on which marine ecosystems4 run. A decline of phytoplankton affects everything up the food chain, including humans." Using an unprecedented5 collection of historical and recent oceanographic(海洋学的) data, a team from Canada's Dalhousie University documented phytoplankton declines of about 1% of the global average per year. This trend is particularly well documented in the Northern Hemisphere and after 1950, and would translate into a decline of approximately 40% since 1950. The scientists found that long-term phytoplankton declines were negatively correlated with rising sea surface temperatures and changing oceanographic conditions.
The goal of the three-year analysis was to resolve one of the most pressing issues in oceanography, namely to answer the seemingly simple question of whether the ocean is becoming more (or less) green with algae. Previous analyses had been limited to more recent satellite data (consistently一贯地,一致地 available since 1997) and have yielded variable results. To extend the record into the past, the authors analysed a unique compilation6 of historical measurements of ocean transparency going back to the very beginning of quantitative7 oceanography in the late 1800s, and combined these with additional samples of phytoplankton pigment8 (chlorophyll) from ocean-going research vessels9. The end result was a database of just under half a million observations which enabled the scientists to estimate phytoplankton trends over the entire globe going back to the year 1899.
The scientists report that most phytoplankton declines occurred in polar and tropical regions and in the open oceans where most phytoplankton production occurs. Rising sea surface temperatures were negatively correlated with phytoplankton growth over most of the globe, especially close to the equator(赤道) . Phytoplankton need both sunlight and nutrients11 to grow; warm oceans are strongly stratified(分层) , which limits the amount of nutrients that are delivered from deeper waters to the surface ocean. Rising temperatures may contribute to making the tropical oceans even more stratified, leading to increasing nutrient10 limitation and phytoplankton declines. The scientists also found that large-scale climate fluctuations12(波动,变动) , such as the El-Niño Southern Oscillation (ENSO), affect phytoplankton on a year-to-year basis, by changing short-term oceanographic conditions.
The findings contribute to a growing body of scientific evidence indicating that global warming is altering the fundamentals of marine ecosystems. Says co-author Marlon Lewis, "Climate-driven phytoplankton declines are another important dimension of global change in the oceans, which are already stressed by the effects of fishing and pollution. Better observational tools and scientific understanding are needed to enable accurate forecasts of the future health of the ocean." Explains co-author Boris Worm, "Phytoplankton are a critical part of our planetary life support system. They produce half of the oxygen we breathe, draw down(引来,招致) surface CO2, and ultimately support all of our fisheries(渔业,渔场) . An ocean with less phytoplankton will function differently, and this has to be accounted for in our management efforts."