Engineering researchers the University of Southern California have made a significant breakthrough in the use of nanotechnologies for the construction of a synthetic1(合成的,人造的) brain. They have built a carbon nanotube synapse2 circuit whose behavior in tests reproduces the function of a neuron, the building block of the brain. The team, which was led by Professor Alice Parker and Professor Chongwu Zhou in the USC Viterbi School of Engineering Ming Hsieh Department of Electrical Engineering, used an interdisciplinary(各学科间的) approach combining circuit design with nanotechnology to address the complex problem of capturing brain function.
In a paper published in the proceedings3 of the IEEE/NIH 2011 Life Science Systems and Applications Workshop in April 2011, the Viterbi team detailed4 how they were able to use carbon nanotubes to create a synapse.
Carbon nanotubes are molecular5 carbon structures that are extremely small, with a diameter a million times smaller than a pencil point. These nanotubes can be used in electronic circuits, acting6 as metallic7 conductors or semiconductors8.
"This is a necessary first step in the process," said Parker, who began the looking at the possibility of developing a synthetic brain in 2006. "We wanted to answer the question: Can you build a circuit that would act like a neuron? The next step is even more complex. How can we build structures out of these circuits that mimic9 the function of the brain, which has 100 billion neurons and 10,000 synapses10 per neuron?"
Parker emphasized that the actual development of a synthetic brain, or even a functional11 brain area is decades away, and she said the next hurdle12 for the research centers on reproducing brain plasticity in the circuits.
The human brain continually produces new neurons, makes new connections and adapts throughout life, and creating this process through analog13 circuits will be a monumental task, according to Parker.
She believes the ongoing14 research of understanding the process of human intelligence could have long-term implications for everything from developing prosthetic(假体的) nanotechnology that would heal traumatic(外伤的) brain injuries to developing intelligent, safe cars that would protect drivers in bold new ways.
For Jonathan Joshi, a USC Viterbi Ph.D. student who is a co-author of the paper, the interdisciplinary approach to the problem was key to the initial progress. Joshi said that working with Zhou and his group of nanotechnology researchers provided the ideal dynamic of circuit technology and nanotechnology.
"The interdisciplinary approach is the only approach that will lead to a solution. We need more than one type of engineer working on this solution," said Joshi. "We should constantly be in search of new technologies to solve this problem."