Researchers at Vanderbilt University have developed a new technique that uses a single UV laser pulse to zap(攻击,打败) away biological tissue at multiple points simultaneously1, a method that could help scientists study the mechanical forces at work as organisms grow and change shape. UV lasers are a commonly-used tool for cutting into tissue, but the lasers usually make incisions3(切口,雕刻) by vaporizing one point at a time in a series of steps. If the initial laser pulse cuts into cells under tension, the tissue could spring back from the incision2. This makes precise tasks, such as cutting around a single cell, difficult.
The Vanderbilt team found a way around this problem by using a computer-controlled hologram(全息图) to shape the phase profile of the UV pulse -basically applying a patterned delay onto different parts of the beam. When the pulse then passed through a lens, the altered phase profile yielded an interference pattern with bright spots at any user-desired pattern of points. Using this method, which can vaporize up to 30 points simultaneously, the researchers successfully isolated4 a single cell on a developing fruit fly embryo5 and then observed how the cell relaxed into a shape dictated6 solely7 by internal forces.
The technique, described in the September issue of the Optical Society's (OSA) open-access journal Biomedical Optics Express, could be applied8 to other model organisms, such as frogs or zebra fish, to help answer outstanding questions in developmental biology. This knowledge may in turn guide bioengineers searching for ways to grow designer tissue.