Not long after the development of the first laser in 1960 scientists discovered that shining a beam through certain crystals produced light of a different color; more specifically, it produced light of exactly twice the frequency of the original. The phenomenon was dubbed1 second harmonic generation(倍频效应) . The green laser pointers in use today to illustrate2 presentations are based on this science, but producing such a beautiful emerald beam is no easy feat3. The green light begins as an infrared4 ray that must be first processed through a crystal, various lenses and other optical elements before it can illuminate5 that PowerPoint on the screen before you.
It was later discovered that applying an electrical field to some crystals produced a similar, though weaker, beam of light. This second discovery, known as EFISH -- for electric-field-induced second harmonic light generation -- has amounted mostly to an interesting bit of scientific knowledge and little more. EFISH devices are big, demanding high-powered lasers, large crystals and thousands of volts6 of electricity to produce the effect. As a result, they are impractical7 for all but a few applications.
In a paper published September 22 in Science, engineers from Stanford have demonstrated a new device that shrinks EFISH devices by orders of magnitude to the nanoscale. The result is an ultra-compact light source with both optical and electrical functions. Research implications for the device range from a better understanding of fundamental science to improved data communications.
Spring-loaded electrons
The device is based on the physical forces that bind8 electrons in orbit around a nucleus9.
"It's like a spring," said Mark Brongersma, an associate professor of materials science and engineering at Stanford.
In most cases, when you shine a light on an atom, the added energy will pull the electron away from the positively10 charged nucleus very predictably, in a linear(线的) fashion, so that when the light is turned off and the electron springs back to its original orbit, the energy released is the same as the light that displaced it.
The key phrase here being: "in most cases." When the light source is a high-intensity laser shining on a solid, researchers discovered that the farther the electrons are pulled away from the nuclei11 the less linearly the light interacts with the atoms.
"In other words, the light-matter interaction becomes nonlinear," said Alok Vasudev, a graduate student and co-author of the paper. "The light you get out is different from the light you put in. Shine a strong near-infrared laser on the crystal and green light exactly twice the frequency emerges."