Engineers at Virginia Polytechnic1(工业学院) Institute and State University (VirginiaTech) have developed a robot that mimics2 the graceful4 motions of jellyfish(水母,海蜇) so precisely5 that it has been named Robojelly. Developed for the U.S. Office of Naval6 Research in 2009, this vehicle was designed to conduct ocean underwater surveillance, enabling it potentially to detect chemical spills, monitor the presence of ships and submarines, and observe the migration7 of schools of fish. Recently, a team at VirginiaTech has improved the performance of this silicone(硅树脂) swimmer, enabling it to better overcome the limitations of its artificial skin and better mimic3 the true motion of a jellyfish. Details on this new design and how it might provide new insights into jellyfish propulsion(推进) mechanisms9 are being presented at the 2011 meeting of the American Physical Society's Division of Fluid Dynamics10 in Baltimore, Md., Nov. 20-22.
According to VirginiaTech mechanical engineer Alex Villanueva, Robojelly looks very similar to an actual jellyfish. "Its geometry is copied almost exactly from a moon jellyfish [Aurelia aurita]," he said. The robot is built out of silicone and uses shape memory alloy11 (SMA) actuators to swim.
To move through the water, the natural animal uses the bell section of its body, which deforms12 and contracts to provide thrust. The lower, or lagging, section of the bell is known as the flexible margin13, and it deforms slightly later in the swimming process than the rest of the bell. Until recently, however, Robojelly lacked this crucial piece of anatomy14(解剖学) in its design.
Villanueva and his colleagues tested a number of different designs for their robot, some with and without an analog15 to a flexible margin. Initially16, the artificial materials used in construction presented a problem. Unlike their natural counterparts, the artificial materials tended to fold as they deformed17, reducing Robojelly's performance. After testing a number of designs and lengths for the folding margin, the engineers discovered that cutting slots into the bell reduced this unwanted folding effect.
This gave Robojelly a truer swimming stroke, as well as a big boost in speed.
"These results clearly demonstrate that the flap plays an important role in the propulsion mechanism8 of Robojelly and provides an anatomical understanding of natural jellyfish," said Villanuerva.