Scientists believe they've pinpointed1 the last crucial piece of the 80-year-old puzzle of how plants "know" when to flower. Determining the proper time to flower, important if a plant is to reproduce successfully, involves a sequence of molecular2 events, a plant's circadian(生理节奏的) clock and sunlight.
Understanding how flowering works in the simple plant used in this study -- Arabidopsis -- should lead to a better understanding of how the same genes3 work in more complex plants grown as crops such as rice, wheat and barley4(大麦) , according to Takato Imaizumi, a University of Washington assistant professor of biology and corresponding author of a paper in the May 25 issue of the journal Science.
"If we can regulate the timing5 of flowering, we might be able to increase crop yield by accelerating or delaying this. Knowing the mechanism6 gives us the tools to manipulate this," Imaizumi said. Along with food crops, the work might also lead to higher yields of plants grown for biofuels.
At specific times of year, flowering plants produce a protein known as FLOWERING LOCUS7 T in their leaves that induces flowering. Once this protein is made, it travels from the leaves to the shoot apex8, a part of the plant where cells are undifferentiated, meaning they can either become leaves or flowers. At the shoot apex, this protein starts the molecular changes that send cells on the path to becoming flowers.
Changes in day length tell many organisms that the seasons are changing. It has long been known that plants use an internal time-keeping mechanism known as the circadian clock to measure changes in day length. Circadian clocks synchronize9 biological processes during 24-hour periods in people, animals, insects, plants and other organisms.
Imaizumi and the paper's co-authors investigated what's called the FKF1 protein, which they suspected was a key player in the mechanism by which plants recognize seasonal10 change and know when to flower. FKF1 protein is a photoreceptor(光感受器) , meaning it is activated11 by sunlight.
"The FKF1 photoreceptor protein we've been working on is expressed in the late afternoon every day, and is very tightly regulated by the plant's circadian clock," Imaizumi said. "When this protein is expressed during days that are short, this protein cannot be activated, as there is no daylight in the late afternoon. When this protein is expressed during a longer day, this photoreceptor makes use of the light and activates12 the flowering mechanisms13 involving FLOWERING LOCUS T. The circadian clock regulates the timing of the specific photoreceptor for flowering. That is how plants sense differences in day length."