Imagine a clock that will keep perfect time forever, even after the heat-death of the universe. This is the "wow" factor behind a device known as a "space-time crystal," a four-dimensional crystal that has periodic structure in time as well as space. However, there are also practical and important scientific reasons for constructing a space-time crystal. With such a 4D crystal, scientists would have a new and more effective means by which to study how complex physical properties and behaviors emerge from the collective interactions of large numbers of individual particles, the so-called many-body problem of physics. A space-time crystal could also be used to study
phenomena1 in the quantum world, such as
entanglement2(纠缠,牵连), in which an action on one particle impacts another particle even if the two particles are separated by vast distances.
A space-time crystal, however, has only existed as a concept in the minds of theoretical scientists with no serious idea as to how to actually build one -- until now. An international team of scientists led by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has proposed the experimental design of a space-time crystal based on an electric-field ion trap and the Coulomb repulsion of particles that carry the same electrical charge.
"The electric field of the ion trap holds charged particles in place and Coulomb repulsion causes them to spontaneously form a
spatial3(空间的) ring crystal," says Xiang Zhang, a
faculty4 scientist with Berkeley Lab's Materials Sciences Division who led this research. "Under the application of a weak static magnetic field, this ring-shaped ion crystal will begin a
rotation5 that will never stop. The
persistent6 rotation of trapped ions produces temporal order, leading to the formation of a space-time crystal at the lowest quantum energy state."
Because the space-time crystal is already at its lowest quantum energy state, its temporal order -- or timekeeping -- will theoretically persist even after the rest of our universe reaches entropy,
thermodynamic equilibrium7(热力学平衡) or "heat-death."
Zhang, who holds the Ernest S. Kuh Endowed Chair Professor of Mechanical Engineering at the University of California (UC) Berkeley, where he also directs the Nano-scale Science and Engineering Center, is the corresponding author of a paper describing this work in Physical Review Letters (PRL). The paper is titled "Space-time crystals of trapped ions." Co-authoring this paper were Tongcang Li, Zhe-Xuan Gong, Zhang-Qi Yin, Haitao Quan, Xiaobo Yin, Peng Zhang and Luming Duan.
The concept of a crystal that has
discrete8(不连续的) order in time was proposed earlier this year by Frank Wilczek, the Nobel-prize winning
physicist9 at the Massachusetts Institute of Technology. While Wilczek mathematically proved that a time crystal can exist, how to
physically10 realize such a time crystal was unclear. Zhang and his group, who have been working on issues with temporal order in a different system since September 2011, have come up with an experimental design to build a crystal that is discrete both in space and time -- a space-time crystal. Papers on both of these proposals appear in the same issue of PRL (September 24, 2012).