No matter their size or shape, explosive volcanoes produce tremors2 at similar frequencies for minutes, days or weeks before they erupt. In the Feb. 24 issue of the journal Nature, researchers at Yale University and the University of British Columbia (UBC) describe a model that explains this strange phenomenon – and may help forecast deadly eruptions3. When such volcanoes erupt they can shoot hot ash up to 40 kilometers into the atmosphere and cause devastating5 destruction when the ash column collapses6 and spreads as "pyroclastic(火山碎屑) flows." Prior to most of these explosive eruptions the volcanoes shake slightly but measurably, and the shaking becomes more dramatic during the eruption4 itself. This tremor1 is one of the primary precursors7(先驱者,前体细胞) and warnings used by volcanologists for forecasting an eruption.
"Tremor is very mysterious, most notably8 because it shakes at pretty much the same frequency in almost every explosive volcano, whether it's in Alaska, the Caribbean, New Zealand, or Central America," said David Bercovici, professor and chair of the Department of Geology and Geophysics at Yale, and co-author of the research. "That it's so universal is very weird9 because volcanoes are so different in size and character. It would be like blowing on five different musical wind instruments and having them all sound the same."
For minutes to weeks before eruptions, tremors in nearly all volcanoes stay in a narrow band of frequencies from about 0.5 to 2 HZ. Just before and during the eruption, the frequency climbs to a higher pitch, and the range spreads out to between 0.5 and 7 HZ. This similarity in tremors has been hard to explain because each volcano differs in many variables such as physical structure, magma(岩浆) composition or gas content.
The mathematical model developed by Bercovici and his colleague Mark Jellinek at UBC suggests these similarities can be explained by "magma wagging" – or the rattling10 that occurs from the interaction of rising magma and the foamy11 jacket of gas that surrounds it. The factors that control this rattling(很好的,活泼的) or wagging(摇动的) vary little between volcanoes, which explains why the same tremors occur in very different volcanoes.
"Explosive eruptions are some of the most spectacular and destructive phenomena12 in nature, and tremor is both a warning of the event and a vital clue about what is going on in the belly13 of the beast," Bercovici said. "This model will provide a much-needed framework for understanding the physics of tremors, and this can only help with the prediction and forecasting of destructive eruptions."