When ants go exploring in search of food they end up choosing collective routes that fit
statistical1 distributions of probability. This has been demonstrated by a team of
mathematicians2 after analysing the trails of a species of Argentine ant. Studies like this could be
applied3 to
coordinate4 the movement of micro-robots in cleaning contaminated areas for example. Scientists have yet to discover the
mechanisms5 explaining how flocks of birds, shoals of fish, lines of ants and other complex natural systems
organise6 themselves so well when moving collectively.
To tackle this problem, researchers from Spain and the U.S. have analysed the movements of Argentine ants (Linepithema humile, an invasive species in many parts of the world) while they
forage7 or explore an empty space (a petri dish) and propose a model explaining how they form their routes.
The authors, whose study has been published in the journal Mathematical Biosciences, started by observing the behaviour of ants individually and subsequently as a collective group. They recorded all their movements and based on these experiments, detected that the
random8 changes in the direction of the insects follow mathematical patterns.
"To be more specific, they are a mixture of Gaussian and Pareto distributions, two probability functions which are commonly used in statistics, and that in this case
dictate9 how much the ant 'turns' at each step and the direction it will travel in," María Vela Pérez, researcher at the European University in Madrid and co-author of the study, explains.
The scientists had already verified in previous studies that the '
persistence10' of ants, or rather, their tendency not to change their direction while there are no obstacles or external effects, together with the 'reinforcement' occurring in areas which they have already visited (thanks to the pheromone trail that they leave) are two factors which determine their routes as they forage.
Now, with this data they have been able to create the model describing the collective movement of the ants on a surface. The numerical simulations on the computer show the formation of ramified patterns very similar to those observed in the petri dishes during the real experiment with ants.