Titanium is the leading material for artificial knee and
hip1 joints2 because it's strong, wear-resistant and nontoxic, but an unexpected discovery by Rice University
physicists3 shows that the gold standard for artificial joints can be improved with the addition of some actual gold. "It is about 3-4 times harder than most steels," said Emilia Morosan, the lead scientist on a new study in Science Advances that describes the properties of a 3-to-1 mixture of titanium and gold with a specific atomic structure that imparts hardness. "It's four times harder than pure titanium, which is what's currently being used in most dental
implants5 and
replacement6 joints."
Morosan, a
physicist4 who specializes in the design and synthesis of compounds with exotic electronic and magnetic properties, said the new study is "a first for me in a number of ways. This compound is not difficult to make, and it's not a new material."
In fact, the atomic structure of the material -- its atoms are tightly packed in a "cubic" crystalline structure that's often associated with hardness -- was
previously7 known. It's not even clear that Morosan and former graduate student Eteri Svanidze, the study's lead co-author, were the first to make a pure sample of the ultrahard "beta" form of the compound. But due to a couple of lucky breaks, they and their co-authors are the first to document the material's
remarkable8 properties.
"This began from my core research," said Morosan, professor of physics and astronomy, of chemistry and of materials science and nanoengineering at Rice. "We published a study not long ago on titanium-gold, a 1-to-1 ratio compound that was a magnetic material made from nonmagnetic elements. One of the things that we do when we make a new compound is try to grind it into powder for X-ray purposes. This helps with identifying the composition, the purity, the crystal structure and other
structural9 properties.
"When we tried to grind up titanium-gold, we couldn't," she recalled. "I even bought a diamond (coated)
mortar10 and
pestle11, and we still couldn't grind it up."