Ground-breaking research by an international team of scientists will help to make one of the most versatile1(通用的) of bacteria even more useful to society and the environment. Though it lives naturally in the soil, the bacterium2 Bacillus subtilis is widely used as a model laboratory organism. It is also used as a 'cell factory' to produce vitamins for the food industry and, in biotechnology, to produce enzymes3 such as those used in washing powders.
The BaSysBio research project, carried out by a consortium of researchers from eight European countries and Australia including the Department of Chemistry at the University of York, is unprecedented4 in its scope and has given scientists an unrivaled(无敌的) level of understanding of the way the organism can adapt to diverse conditions.
Billions of years of evolution have shaped the performance of B.subtilis cells and the research has provided novel insights into the regulatory processes that help them to maintain their metabolism5(新陈代谢) in prime condition.
Published in two papers in the latest edition of Science, the findings will enable scientists to engineer B. subtilis to become an even more effective producer of metabolites for a wide range of industries from pharmaceutical6 and chemical manufacturing to the agri and food sectors7. The work also has medical implications as it will help scientists to understand how bacteria deal with changing conditions during infection.
B. subtilis is able to survive and grow in diverse and changing environments. The research used expertise8 from different fields ranging from molecular9 biology to bioinformatics and mathematics to investigate the cell as a system of interacting molecular components10 and the strategies it uses to adapt to varying conditions.
The researchers acquired and analysed large experimental data sets which were used with mathematical models to capture the complexity11 of the cellular12 system. They analysed the genes13 expressed under more than 100 different conditions that mimic14 the natural and laboratory environment of the organism.
It was already known that the B.subtilis genome carries around 4,200 genes but the new research identified 512 new potential genes in the bacterium.
The project co-ordinator Dr Philippe Noirot, of the INRA Centre at Jouy-en-Josas, near Paris, says: "Besides their scientific novelty, these two studies also represent a potential blueprint15 for bacterial16 systems biology. Our work will potentially make B.subtilis an even more efficient producer of enzymes. The results and approaches used in our studies, suggest it is now possible to design specific experiments to unravel17(解开,阐明) other, previously18 more intractable, cellular processes."