| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Xinwei Wang had a hunch1 that(总感到,总怀疑) spider webs were worth a much closer look. So he ordered eight spiders -- Nephila clavipes, golden silk orbweavers -- and put them to work eating crickets and spinning webs in the cages he set up in an Iowa State University greenhouse. Wang, an associate professor of mechanical engineering at Iowa State, studies thermal2 conductivity, the ability of materials to conduct heat. He's been looking for organic materials that can effectively transfer heat. It's something diamonds, copper3 and aluminum4 are very good at; most materials from living things aren't very good at all. But spider silk has some interesting properties: it's very strong, very stretchy, only 4 microns thick (human hair is about 60 microns) and, according to some speculation5, could be a good conductor of heat. But nobody had actually tested spider silk for its thermal conductivity. And so Wang, with partial support from the Army Research Office and the National Science Foundation, decided6 to try some lab experiments. Xiaopeng Huang, a post-doctoral research associate in mechanical engineering; and Guoqing Liu, a doctoral student in mechanical engineering, helped with the project. "I think we tried the right material," Wang said of the results. What Wang and his research team found was that spider silks -- particularly the draglines(牵引绳索) that anchor webs in place -- conduct heat better than most materials, including very good conductors such as silicon7, aluminum and pure iron. Spider silk also conducts heat 1,000 times better than woven silkworm silk and 800 times better than other organic tissues. A paper about the discovery -- "New Secrets of Spider Silk: Exceptionally High Thermal Conductivity and its Abnormal Change under Stretching" -- has just been published online by the journal Advanced Materials. "Our discoveries will revolutionize the conventional thought on the low thermal conductivity of biological materials," Wang wrote in the paper. The paper reports that using laboratory techniques developed by Wang -- "this takes time and patience" -- spider silk conducts heat at the rate of 416 watts8 per meter Kelvin. Copper measures 401. And skin tissues measure .6. "This is very surprising because spider silk is organic material," Wang said. "For organic material, this is the highest ever. There are only a few materials higher -- silver and diamond." Even more surprising, he said, is when spider silk is stretched, thermal conductivity also goes up. Wang said stretching spider silk to its 20 percent limit also increases conductivity by 20 percent. Most materials lose thermal conductivity when they're stretched. That discovery "opens a door for soft materials to be another option for thermal conductivity tuning," Wang wrote in the paper. 点击收听单词发音
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
上一篇:汽油的空气污染指数比柴油大 下一篇:海藻可作为生物能源的原料 |
- 发表评论
-
- 最新评论 进入详细评论页>>