Scientists are beginning to understand one of life's enduring mysteries -- why women live, on average, longer than men. Published August 2 in Current Biology, research led by Monash University, describes how mutations to the
DNA2 of the
mitochondria(线粒体) can account for differences in the life
expectancy3 of males and females. Mitochondria, which exist in almost all animal cells, are vital for life because they convert our food into the energy that powers the body.
Dr Damian Dowling and PhD student, Florencia Camus, both from the Monash School of Biological Sciences, worked with Dr David Clancy from Lancaster University to uncover differences in
longevity4 and biological aging across male and female fruit flies that carried mitochondria of different origins. They found that
genetic5 variation across these mitochondria were reliable predictors of life expectancy in males, but not in females.
Dr Dowling said the results point to numerous mutations within mitochondrial DNA that affect how long males live, and the speed at which they age.
"
Intriguingly6, these same mutations have no effects on patterns of aging in females. They only affect males," Dr Dowling said.
"All animals possess mitochondria, and the tendency for females to outlive males is common to many different species. Our results therefore suggest that the mitochondrial mutations we have uncovered will generally cause faster male aging across the animal kingdom."
The researchers said these mutations can be
entirely7 attributed to a
quirk8(怪癖,急转) in the way that mitochondrial
genes9 are passed down from parents to offspring.
"While children receive copies of most of their genes from both their mothers and fathers, they only receive mitochondrial genes from their mothers. This means that evolution's quality control process, known as natural selection, only screens the quality of mitochondrial genes in mothers," Dr Dowling said.
"If a mitochondrial
mutation1 occurs that harms fathers, but has no effect on mothers, this mutation will slip through the gaze of natural selection, unnoticed. Over thousands of generations, many such mutations have accumulated that harm only males, while leaving females
unscathed(未受伤的) ."
The study builds on previous findings by Dr Dowling and his team that investigated the consequences of
maternal10 inheritance of mitochondria in causing male
infertility11.
"Together, our research shows that the mitochondria are hotspots for mutations affecting male health. What we seek to do now is investigate the genetic
mechanisms12 that males might arm themselves with to nullify the effects of these harmful mutations and remain healthy," Dr Dowling said.