Nature proves every day that it is both complex and efficient. Organic chemists are
envious1(羡慕) of it; their conventional tools confine them to simpler achievements. Thanks to the work of professor Stefan Matile's team from the University of Geneva, these limitations could become a thing of the past. His publication in the Nature Chemistry journal indeed offers a new kind of code to chemists, allowing them to access new levels of
complexity2. Stefan Matile
opts3 for
sincerity4. For him, if organic chemistry is often fond of simplifying its
functional5 systems, it is because it is mostly impossible for it to construct and manage
molecular6 architectures as complex as those produced with tremendous efficiency in nature. "It's a fact," says the UNIGE professor and NCCR Chemical Biology member, "that we are far from being able to match the genius of nature."
Where the complexity arises
The specialist attributes the
genetic7 code to this genius of nature. "It is rather simple because it is based on four foundations --
adenine(腺嘌呤),
cytosine(胞嘧啶),
guanine(鸟嘌呤), and thymine (A, C, G, and T). The double helix structure of
DNA8 is also quite simple. The complexity arises mainly from the cell's transfer of this information from one stage to the next."
Stefan Matile has long believed that a code also exists in organic chemistry and must be discovered, which he is convinced he has achieved with the assistance of his colleague, Edvinas Orentas.
"I must admit that this work is extremely complicated, fundamental, and theoretical," the professor continues. "But I also think it's quite revolutionary, especially if we are able to
implement9(实施,落实) it on a practical level."
Laying the foundation
In fact, thanks to him, organic chemists may be able to stop
laboriously10 constructing their functional systems, atom by atom, link by link. The code would allow them to write two-dimensional maps, a
relatively11 simple and manageable challenge. The complexity of three-dimensional systems would then be created by
transcribing12 this scheduled information; a transcription that, with supporting proof, has a
reliability13 of 97%, so close to perfection. A powerful way to approach the complexity of nature.
From now on, Stefan Matile's group will try to put this code into practice to produce surface materials like the ones used to make organic solar cells, which
mimic14 the processes at work during
photosynthesis15(光合作用). "We don't yet know if it will work exactly as we expect, but the adventure promises to be exciting."