A coral species that is found in abundance from Indonesia
eastward1 to Fiji, Samoa, and the Line Islands rarely crosses the Eastern Pacific Barrier toward the coast of the Americas, according to a team of researchers led by Iliana Baums, an assistant professor of biology at Penn State University. Darwin hypothesized in 1880 that most species could not
disperse2(分散) across the
marine3 barrier, and Baums's study is the first comprehensive test of that hypothesis using coral. The results of the scientific paper, which will be published in the journal
Molecular4 Ecology, has important implications for climate-change research, species-preservation efforts, and the economic stability of the eastern Pacific region, including the Galapagos, Costa Rica, Panama, and Ecuador. The Eastern Pacific Barrier (EPB) -- an uninterrupted 4,000-mile stretch of water with depths of up to 7 miles -- separates the central from the eastern Pacific Ocean. In his writings, Darwin had termed this barrier "impassable" and, since Darwin's time, scientists have confirmed that many species of marine animals cannot cross this oceanic divide. However, until now, researchers had not performed a comprehensive analysis of the impact of the barrier on coral species. "The adult colonies reproduce by making small coral
larvae5(幼虫) that stay in the water column for some time, where currents can take them to far-away places," Baums said. "But the EPB is a formidable barrier because the time it would take to cross it probably exceeds the life span of a larva."
To test whether or not coral larvae are able to travel across the barrier, Baums and her team chose a particularly
hearty6 species called Porites lobata. "Compared with other coral species, Porites lobata larvae seem able to survive for longer periods of time; for example, the weeks that are required to travel across the marine barrier," Baums said. "This species also harbors
symbionts(共生体) in its larvae that can provide food during the long journey. In addition, the adults seem able to brave more extreme temperatures, as well as more acidic conditions. So, if any coral species is going to make it across, it is this one."
Baums and her team hypothesized that coral larvae originating in the central Pacific might be pushed along the North Equatorial Counter Current, which flows from west to east and becomes stronger and warmer in years with an El Niño Southern Oscillation event -- a climate pattern that occurs about every five years. "Coral larvae are not very mobile," Baums said. "So the only way coral larvae originating to the west of the barrier could travel to the east is along an ocean current, and warming of a current like the North Equatorial Counter Current would help larvae survive. If coral have traveled along this current in the past, we should find populations that are
genetically7 similar living from the Galapagos to Costa Rica, Panama, and Ecuador."