Scientists from the University of Southampton have identified a repeating trigger for the largest explosive
volcanic1 eruptions3 on Earth. The Las Cañadas volcanic caldera on Tenerife, in the Canary Islands, has generated at least eight major eruptions during the last 700,000 years. These catastrophic events have resulted in
eruption2 columns of over 25km high and expelled widespread
pyroclastic(火成碎屑的) material over 130km. By comparison, even the smallest of these eruptions expelled over 25 times more material than the 2010 eruption of Eyjafjallajökull, Iceland.
By analysing crystal
cumulate(堆积的) nodules (igneous rocks formed by the accumulation of crystals in magma) discovered in pyroclastic deposits of major eruptions, the scientists found that pre-eruptive mixing within the magma
chamber4 -- where older cooler magma mixed with younger hotter magma -- appears to be the repeating trigger in large-scale eruptions.
These nodules trapped and preserved the final magma beneath the volcano immediately before eruption. Dr Rex Taylor, Senior Lecturer in Ocean and Earth Science at the University of Southampton, investigated nodules and their trapped
magma(岩浆) to see what caused the eruptions. He found that the nodules provide a record of the changes occurring in the magma
plumbing5 right through to the moment the volcano erupted.
Dr Taylor says: "These nodules are special because they were ripped from the magma chamber before becoming completely solid -- they were mushy, like balls of coarse wet sand.
Rims6 of crystals in the nodules grew from a very different magma, indicating a major mixing event occurred immediately before eruption. Stirring young hot magma into older, cooler magma appears to be a common event before these explosive eruptions."
Co-author of the study, Dr Tom Gernon, Lecturer in Ocean and Earth Science at the University of Southampton, says: "The analysis of crystal nodules from the volcano documents the final processes and changes immediately prior to eruption -- those triggering the catastrophic eruptions. The very presence of mushy nodules in the pyroclastic deposits suggests that the magma chamber empties itself during the eruption, and the chamber then
collapses7 in on itself forming the caldera."
The Las Cañadas volcano is an IAVCEI (International Association of Volcanology and Chemistry of the Earth's Interior) Decade Volcano -- identified by the international community as being
worthy8 of particular study in light of their history of large, destructive eruptions and
proximity9 to
populated area(居民区).
Dr Gernon, who is based at the National Oceanography Centre at Southampton's waterfront campus with Dr Taylor, adds: "Our findings will prove
invaluable10 in future hazard and risk
assessment11 on Tenerife and elsewhere. The scale of the eruptions we describe has the potential to cause
devastation12 on the heavily populated island of Tenerife and major economic
repercussions13(反响,影响) for the wider European community."