| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stanford University scientists have built the first solar cell made entirely1 of carbon, a promising2 alternative to the expensive materials used in photovoltaic(光电的) devices today. The results are published in the Oct. 31 online edition of the journal ACS Nano.
"Carbon has the potential to deliver high performance at a low cost," said study senior author Zhenan Bao, a professor of chemical engineering at Stanford. "To the best of our knowledge, this is the first demonstration3 of a working solar cell that has all of the components5 made of carbon. This study builds on previous work done in our lab."
Unlike rigid6 silicon7 solar panels that adorn8(装饰) many rooftops, Stanford's thin film prototype is made of carbon materials that can be coated from solution. "Perhaps in the future we can look at alternative markets where flexible carbon solar cells are coated on the surface of buildings, on windows or on cars to generate electricity," Bao said.
The coating technique also has the potential to reduce manufacturing costs, said Stanford graduate student Michael Vosgueritchian, co-lead author of the study with postdoctoral researcher Marc Ramuz.
"Processing silicon-based solar cells requires a lot of steps," Vosgueritchian explained. "But our entire device can be built using simple coating methods that don't require expensive tools and machines."
Carbon nanomaterials
The Bao group's experimental solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes. In a typical thin film solar cell, the electrodes are made of conductive metals and indium tin oxide9 (ITO). "Materials like indium are scarce and becoming more expensive as the demand for solar cells, touchscreen panels and other electronic devices grows," Bao said. "Carbon, on the other hand, is low cost and Earth-abundant."
The Bao group's all-carbon solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes.
For the study, Bao and her colleagues replaced the silver and ITO used in conventional electrodes with graphene -- sheets of carbon that are one atom thick -and single-walled carbon nanotubes that are 10,000 times narrower than a human hair. "Carbon nanotubes have extraordinary electrical conductivity and light-absorption properties," Bao said.
For the active layer, the scientists used material made of carbon nanotubes and "buckyballs" -- soccer ball-shaped carbon molecules10 just one nanometer in diameter. The research team recently filed a patent for the entire device.
"Every component4 in our solar cell, from top to bottom, is made of carbon materials," Vosgueritchian said. "Other groups have reported making all-carbon solar cells, but they were referring to just the active layer in the middle, not the electrodes."
One drawback of the all-carbon prototype is that it primarily absorbs near-infrared wavelengths11 of light, contributing to a laboratory efficiency of less than 1 percent -- much lower than commercially available solar cells. "We clearly have a long way to go on efficiency," Bao said. "But with better materials and better processing techniques, we expect that the efficiency will go up quite dramatically."
点击收听单词发音
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
上一篇:大脑如何控制习惯 下一篇:自闭症婴儿与正常婴儿前六个月生长无异 |
- 发表评论
-
- 最新评论 进入详细评论页>>