More than 80
genetic1 'spelling mistakes' that can increase the risk of breast, prostate and ovarian cancer have been found in a large, international research study within the framework of the EU network COGS. For the first time, the researchers also have a
relatively2 clear picture of the total number of genetic
alterations3 that can be linked to these cancers. Ultimately the researchers hope to be able to calculate the individual risk of cancer, to better understand how these cancers develop and to be able to generate new treatments. The main findings are published in five articles in a special issue on genetic risk factors for cancer in the scientific journal Nature Genetics. The articles originate from COGS (Collaborative Oncological Gene-environment Study), an EU-based consortium where more than 160 research groups from all over the world are included. In the five COGS studies 100,000 patients with breast, ovarian or prostate cancer and 100,000 healthy individuals from the general population were included.
The scientists performed genetic analyses on all study participants. The composition of the nitrogen bases A, G, C and T was studied on 200,000 selected sections of the
DNA4 strand5. When cancer patients had significantly different compositions compared to healthy control subjects, the differences were considered to be relevant to risk of disease. The alterations can be described as a genetic 'spelling mistake', where A, G, C or T have been replaced with another letter. This spelling mistake is called Single Nucleotide Polymorphism (SNP) -- pronounced '
snip6'.
For breast cancer the researchers found 49 genetic typos or SNPs, which is more than double the number
previously7 found. In the case of prostate cancer, researchers have discovered another 26
deviations9(差异,偏差), which means that a total number of 78 SNPs may be linked to the disease. For ovarian cancer 8 new relevant SNPs were found.
"An equally important finding is that we identified how many additional SNPs that could influence the risk of breast cancer and prostate cancer, respectively. For breast cancer the number is 1,000 and for prostate cancer 2,000," says Per Hall, Professor at Karolinska Institutet and the
coordinator10 of the COGS consortium. "We also have a picture of where in the genome we should look in future studies.
SNPs are part of our natural heritage, we all have them. How it affects the individual depends on where on the DNA strand the genetic
deviation8 is found. The researchers now hope to be able to evaluate the importance of the identified deviations, so that it will be possible to more clearly predict which individuals are at high risk of developing one of these cancers.
"We're now on the
verge11 of being able to use our knowledge to develop tests that could
complement12 breast cancer screening and take us a step closer to having an effective prostate cancer screening programme," says Professor Doug Easton of the University of Cambridge, UK, who has led several of the presented studies.