Baby birds have sleep patterns similar to baby mammals, and their sleep changes in the same way when growing up. This is what a team from the Max Planck Institute for
Ornithology1 and the University of Lausanne found out working with barn
owls2 in the wild. The team also discovered that this change in sleep was strongly correlated with the expression of a
gene3 involved in producing dark,
melanic(黑色的) feather spots, a trait known to
covary(共变) with behavioral and
physiological4 traits in adult owls. These findings raise the
intriguing5 possibility that sleep-related developmental processes in the brain contribute to the link between melanism and other traits observed in adult barn owls and other animals. Sleep in mammals and birds consists of two phases, REM sleep ("Rapid Eye Movement Sleep") and non-REM sleep. We experience our most vivid dreams during REM sleep, a
paradoxical(矛盾的) state characterized by awake-like brain activity. Despite extensive research, REM sleep's purpose
remains6 a mystery. One of the most salient features of REM sleep is its preponderance early in life. A variety of mammals spend far more time in REM sleep during early life than when they are adults. For example, as newborns, half of our time asleep is spent in REM sleep, whereas last night REM sleep probably
encompassed7 only 20-25% percent of your time snoozing.
Although birds are the only non-mammalian group known to clearly engage in REM sleep, it has been unclear whether sleep develops in the same manner in baby birds. Consequently, Niels Rattenborg of the MPIO, Alexandre Roulin of Unil, and their PhD student Madeleine Scriba, reexamined this question in a population of wild barn owls. They used an electroencephalogram (EEG) and movement data logger in conjunction with
minimally8 invasive EEG
sensors9 designed for use in humans, to record sleep in 66 owlets of varying age. During the
recordings10, the owlets remained in their nest box and were fed normally by their parents. After having their sleep patterns recorded for up to five days, the logger was removed. All of the owlets subsequently fledged and returned at normal rates to breed in the following year, indicating that there were no long-term
adverse11 effects(不良反应) of eves-dropping on their sleeping brains.
Despite lacking significant eye movements (a trait common to owls), the owlets spent large amounts of time in REM sleep. "During this sleep phase, the owlets' EEG showed awake-like activity, their eyes remained closed, and their heads nodded slowly," reports Madeleine Scriba from the University of Lausanne (see video in the link below). Importantly, the researchers discovered that just as in baby humans, the time spent in REM sleep declined as the owlets
aged12.
In addition, the team examined the relationship between sleep and the expression of a gene in the feather follicles involved in producing dark, melanic feather spots. "As in several other avian and mammalian species, we have found that melanic spotting in owls covaries with a variety of behavioral and physiological traits, many of which also have links to sleep, such as immune system function and energy regulation," notes Alexander Roulin from the University of Lausanne. Indeed, the team found that owlets expressing higher levels of the gene involved in melanism had less REM sleep than expected for their age, suggesting that their brains were developing faster than in owlets expressing lower levels of this gene. In line with this
interpretation13, the
enzyme14 encoded by this gene also plays a role in producing
hormones15 (thyroid and insulin) involved in brain development.
Although additional research is needed to determine exactly how sleep, brain development, and pigmentation are interrelated, these findings nonetheless raise several intriguing questions. Does variation in sleep during brain development influence adult brain organization? If so, does this contribute to the link between behavioral and physiological traits and melanism observed in adult owls? Do sleep and pigmentation covary in adult owls, and if so how does this influence their behavior and
physiology16? Finally, Niels Rattenborg from the Max Planck Institute for Ornithology in Seewiesen hopes that "this naturally occurring variation in REM sleep during a period of brain development can be used to reveal exactly what REM sleep does for the developing brain in baby owls, as well as humans."