Enhanced growth of Earth's leafy greens during the 20th century has significantly slowed the planet's transition to being red-hot, according to the first study to
specify1 the extent to which plants have prevented climate change since pre-industrial times. Researchers based at Princeton University found that land
ecosystems2 have kept the planet cooler by absorbing billions of tons of carbon, especially during the past 60 years. The planet's land-based carbon "sink" -- or carbon-storage capacity -- has kept 186 billion to 192 billion tons of carbon out of the atmosphere since the mid-20th century, the researchers report in the
Proceedings3 of the National Academy of Sciences. From the 1860s to the 1950s, land use by humans was a substantial source of the carbon entering the atmosphere because of deforestation and logging. After the 1950s, however, humans began to use land differently, such as by restoring forests and adopting agriculture that, while larger scale, is higher yield. At the same time, industries and
automobiles4 continued to
steadily5 emit carbon dioxide that contributed to a
botanical(植物学的) boom. Although a greenhouse gas and
pollutant6, carbon dioxide also is a plant
nutrient7.
Had Earth's terrestrial ecosystems remained a carbon source they would have instead generated 65 billion to 82 billion tons of carbon in addition to the carbon that it would not have absorbed, the researchers found. That means a total of 251 billion to 274 billion additional tons of carbon would currently be in the atmosphere. That much carbon would have pushed the atmosphere's current carbon dioxide concentration to 485 parts-per-million (ppm), the researchers report -- well past the scientifically accepted threshold of 450 (ppm) at which Earth's climate could drastically and irreversibly change. The current concentration is 400 ppm.
Those "carbon
savings8" amount to a current average global temperature that is cooler by one-third of a degree
Celsius9 (or a half-degree Fahrenheit), which would have been a sizeable jump, the researchers report. The planet has warmed by only 0.74 degrees Celsius (1.3 degrees Fahrenheit) since the early 1900s, and the point at which scientists calculate the global temperature would be dangerously high is a
mere10 2 degrees Celsius (3.6 degrees Fahrenheit) more than pre-industrial levels.
The study is the most comprehensive look at the historical role of terrestrial ecosystems in controlling
atmospheric11 carbon, explained first author Elena Shevliakova, a senior climate modeler in Princeton's Department of Ecology and
Evolutionary12 Biology. Previous research has focused on how plants might
offset13 carbon in the future, but overlooked the importance of increased vegetation uptake in the past, she said.
"People always say we know carbon sinks are important for the climate," Shevliakova said. "We actually for the first time have a number and we can say what that sink means for us now in terms of carbon savings."
"Changes in carbon dioxide
emissions14 from land-use activities need to be carefully considered. Until recently, most studies would just take fossil-fuel emissions and land-use emissions from simple models, plug them in and not consider how managed lands such as recovering forests take up carbon," she said. "It's not just climate -- it's people. On land, people are major drivers of changes in land carbon. They're not just taking carbon out of the land, they're actually changing the land's capacity to take up carbon."