Two billion years ago Earth system was recovering from perhaps the single-most profound
modification1 of its surface environments: the oxygenation of the atmosphere and oceans. This led to a series of major changes in global biogeochemical cycles, as a team around Aivo Lepland of the Norwegian Geological Survey NGU reports in the latest online edition of Nature Geoscience. This also resulted in the distribution of one of life's key elements,
phosphorus(磷). Studies on the unique organic-rich Zaonega rock formation preserved in Carelia, NW Russia, with an age of around two billion years has revealed an astonishing result:"The formation of Earth's earliest phosphorites was influenced strongly, if not controlled completely, by the activity of
sulfur2 bacteria," says co-author Richard Wirth of the GFZ German Research Centre for Geosciences, who
analyzed3 the rock samples with an electron microscope.
"This activity occurred in an oil field setting that had been influenced by active volcanism and associated
venting5 and
seeping7(渗出)." In the modern world, sulfur bacteria inhabit upwelling
vent4 and
seep6 areas known as "Black
Smokers8" and
mediate9 phosphorite formation.
The authors therefore conclude that the formation of the earliest worldwide phosphorites 2 billion years ago can be linked to the establishment of sulfur bacteria habitats, triggered by the oxygenation of Earth.