Lawrence Livermore National Laboratory researchers have developed a new and more efficient approach to a challenging problem in
additive1 manufacturing -- using selective laser melting, namely, the selection of appropriate process
parameters3 that result in parts with desired properties. Selective laser melting (SLM) is a powder-based, additive manufacturing process where a 3D part is produced, layer by layer, using a high-energy laser beam to fuse the metal powder particles. Some SLM applications require parts that are very
dense4, with less than 1 percent
porosity5(多孔性), as the
pores(气孔) or
voids(孔洞) are the weakest part of the material and most likely would result in failure.
But building
functional6 parts and
components7 to specific standards and performance
specifications8 can be challenging because a large number of parameters must be set appropriately. Some of the key parameters include laser power, laser speed, distance between laser scan lines, scanning strategy and powder layer thickness. As a result, there is a need for a reliable and cost-effective approach to determine the right parameters to develop parts with such desired properties as high
density9.
LLNL researchers have developed an efficient approach, based on simple simulations and experiments, to identify
optimal10 parameters to print 3D high-density metal parts. Their work, titled "Density of additively-manufactured, 316L SS parts using laser powder-bed
fusion11 at powers up to 400W" was recently published in the International Journal of Advanced Manufacturing Technology.
The paper explains how parameters for higher-power SLM machines can be selected by using simple, computational simulations to explore the process
parameter2 space. These simulations are used to
compute12 the dimensions of the melt pool, which is the pool of liquid formed when the laser melts the metal powder particles.
"We mine the simulation output to identify important SLM parameters and their values such that the resulting melt pools are just deep enough to melt through the powder into the substrate below," said Chandrika Kamath, an LLNL researcher who is the lead author of the article. "By using the simulations to guide a small number of single-track experiments, we can quickly arrive at parameter values that will likely result in high-density parts."
Kamath and her colleagues, who are part of LLNL's Accelerated Certification of Additively Manufactured Metals (ACAMM) Strategic Initiative, are using simulations at various scales to gain insight into the SLM process.
"We found that the metal density reduces if the speed is too low, due to voids created as a result of keyhole mode laser melting, where the laser drills into the material," Kamath wrote. "At the same time, too high a speed results in
insufficient13 melting. The key is to find the right parameters where the melting is just enough."
The LLNL team found that the use of different powders
affected14 densities15 at lower power, but not at higher power.
"Furthermore, for 316L
stainless16 steel, at higher powers, the density is high over a wider range of scan speeds, unlike at lower powers," the article states. "This would indicate that higher powers could provide greater
flexibility17 in choosing process parameters that
optimize18 various properties of a manufactured part."
Although 316L stainless steel was used in this experiment, Kamath said the team's approach can be
applied19 to other metal powders as well.
LLNL's findings will eventually be used to help
certify20 properties of metal parts built using SLM. The paper is the first step in understanding how we can exploit computer simulations and a small number of carefully chosen experiments to
efficiently21 determine the process parameters, Kamath said.