| ||||||||||||||||||||||||||||||||
Earth and Mercury are both rocky planets with iron cores, but Mercury's interior differs from Earth's in a way that explains why the planet has such a bizarre(奇异的) magnetic field, UCLA planetary physicists1 and colleagues report. Measurements from NASA's Messenger spacecraft have revealed that Mercury's magnetic field is approximately three times stronger at its northern hemisphere than its southern one. In the current research, scientists led by Hao Cao, a UCLA postdoctoral scholar working in the laboratory of Christopher T. Russell, created a model to show how the dynamics2 of Mercury's core contribute to this unusual phenomenon.
The magnetic fields that surround and shield many planets from the sun's energy-charged particles differ widely in strength. While Earth's is powerful, Jupiter's is more than 12 times stronger, and Mercury has a rather weak magnetic field. Venus likely has none at all. The magnetic fields of Earth, Jupiter and Saturn3 show very little difference between the planets' two hemispheres.
Within Earth's core, iron turns from a liquid to a solid at the inner boundary of the planet's liquid outer core; this results in a solid inner part and liquid outer part. The solid inner core is growing, and this growth provides the energy that generates Earth's magnetic field. Many assumed, incorrectly, that Mercury would be similar.
"Hao's breakthrough is in understanding how Mercury is different from the Earth so we could understand Mercury's strongly hemispherical magnetic field," said Russell, a co-author of the research and a professor in the UCLA College's department of Earth, planetary and space sciences. "We had figured out how the Earth works, and Mercury is another terrestrial(陆地的), rocky planet with an iron core, so we thought it would work the same way. But it's not working the same way."
Mercury's peculiar4 magnetic field provides evidence that iron turns from a liquid to a solid at the core's outer boundary, say the scientists, whose research currently appears online in the journal Geophysical Research Letters and will be published in an upcoming print edition.
"It's like a snow storm in which the snow formed at the top of the cloud and middle of the cloud and the bottom of the cloud too," said Russell. "Our study of Mercury's magnetic field indicates iron is snowing throughout this fluid that is powering Mercury's magnetic field."
点击收听单词发音
|
||||||||||||||||||||||||||||||||
上一篇:正确地保存种子可拯救植物 下一篇:美国宇航局发现日冕加热理论的新证据 |
- 发表评论
-
- 最新评论 进入详细评论页>>