Scientists have shown how gravitational waves -- invisible
ripples1 in the
fabric2 of space and time that propagate through the universe -- might be "seen" by looking at the stars. The new model proposes that a star that oscillates at the same frequency as a gravitational wave will absorb energy from that wave and brighten, an overlooked prediction of Einstein's 1916 theory of general relativity. The study, which was published today in the Monthly Notices of the Royal
Astronomical3 Society: Letters, contradicts previous assumptions about the behavior of gravitational waves. "It's pretty cool that a hundred years after Einstein proposed this theory, we're still finding hidden gems," said Barry McKernan, a research associate in the Museum's Department of Astrophysics, who is also a professor at CUNY's
Borough4 of Manhattan Community College; a
faculty5 member at CUNY's Graduate Center; and a Kavli Scholar at the Kavli Institute for Theoretical Physics.
Gravitational waves can be thought of like the sound waves emitted after an earthquake, but the source of the "
tremors6" in space are energetic events like supernovae (exploding stars),
binary7 neutron8 stars (pairs of burned-out cores left behind when stars explode), or the
mergers9 of black holes and neutron stars. Although scientists have long known about the existence of gravitational waves, they've never made direct observations but are attempting to do so through experiments on the ground and in space. Part of the reason why detection is difficult is because the waves interact so weakly with matter. But McKernan and his colleagues from CUNY, the Harvard-Smithsonian Center for Astrophysics, the Institute for Advanced Study, and Columbia University, suggest that gravitational waves could have more of an effect on matter than
previously10 thought.
The new model shows that stars with oscillations --
vibrations11 -- that match the frequency of gravitational waves passing through them can resonate and absorb a large amount of energy from the ripples.
"It's like if you have a spring that's vibrating at a particular frequency and you hit it at the same frequency, you'll make the oscillation stronger," McKernan said. "The same thing applies with gravitational waves."