Astronomers1 using data from the NASA/ESA Hubble Space Telescope, the Spitzer Space Telescope, and the Kepler Space Telescope have discovered clear skies and steamy water vapour on a planet outside our Solar System. The planet, known as HAT-P-11b, is about the size of
Neptune2, making it the smallest exoplanet ever on which water vapour has been detected. The results will appear in the online version of the journal Nature on 24 September 2014. The discovery is a
milestone4 on the road to eventually finding
molecules5 in the atmospheres of smaller, rocky planets more
akin3 to Earth. Clouds in the atmospheres of planets can block the view of what lies beneath them. The
molecular6 makeup7 of these lower regions can reveal important information about the composition and history of a planet. Finding clear skies on a Neptune-size planet is a good sign that some smaller planets might also have similarly good visibility.
"When astronomers go observing at night with telescopes, they say 'clear skies' to mean good luck," said Jonathan Fraine of the University of Maryland, USA, lead author of the study. "In this case, we found clear skies on a distant planet. That's lucky for us because it means clouds didn't block our view of water molecules."
HAT-P-11b is a so-called exo-Neptune -- a Neptune-sized planet that orbits another star. It is located 120 light-years away in the
constellation8 of Cygnus (The Swan). Unlike Neptune, this planet orbits closer to its star, making one lap roughly every five days. It is a warm world thought to have a rocky core, a
mantle9 of fluid and ice, and a thick
gaseous10 atmosphere. Not much else was known about the composition of the planet, or other exo-Neptunes like it, until now.
Part of the challenge in analysing the atmospheres of planets like this is their size. Larger Jupiter-like planets are easier to observe and researchers have already been able to detect water vapour in the atmospheres of some of these giant planets. Smaller planets are more difficult to probe -- and all the smaller ones observed to date have appeared to be cloudy.
The team used Hubble's Wide Field Camera 3 and a technique called transmission spectroscopy, in which a planet is observed as it crosses in front of its parent star. Starlight filters through the
rim11 of the planet's atmosphere and into the telescope. If molecules like water vapour are present, they absorb some of the starlight, leaving distinct signatures in the light that reaches our telescopes.
"We set out to look at the atmosphere of HAT-P-11b without knowing if its weather would be cloudy or not," said Nikku Madhusudhan, from the University of Cambridge, UK, part of the study team. "By using transmission spectroscopy, we could use Hubble to detect water vapour in the planet. This told us that the planet didn't have thick clouds blocking the view and is a very hopeful sign that we can find and analyse more cloudless, smaller, planets in the future. It is groundbreaking!"