Concrete is the world's most-used construction material, and a leading contributor to global warming, producing as much as one-tenth of industry-generated greenhouse-gas
emissions1. Now a new study suggests a way in which those emissions could be reduced by more than half -- and the result would be a stronger, more
durable2 material. The findings come from the most
detailed3 molecular4 analysis yet of the complex structure of concrete, which is a mixture of sand,
gravel5, water, and cement. Cement is made by cooking
calcium6-rich material, usually
limestone7, with silica-rich material -- typically clay -- at temperatures of 1,500 degrees
Celsius8, yielding a hard mass called "clinker." This is then ground up into a powder. The decarbonation of limestone, and the heating of cement, are responsible for most of the material's greenhouse-gas output.
The new analysis suggests that reducing the ratio of calcium to
silicate9 would not only cut those emissions, but would actually produce better, stronger concrete. These findings are described in the journal Nature Communications by MIT senior research scientist Roland Pellenq; professors Krystyn Van Vliet, Franz-Josef Ulm, Sidney Yip, and Markus Buehler; and eight co-authors at MIT and at CNRS in Marseille, France.
"Cement is the most-used material on the planet," Pellenq says, noting that its present usage is estimated to be three times that of steel. "There's no other solution to sheltering mankind in a durable way -- turning liquid into stone in 10 hours, easily, at room temperature. That's the magic of cement."
In conventional cements, Pellenq explains, the calcium-to-silica ratio ranges anywhere from about 1.2 to 2.2, with 1.7 accepted as the standard. But the resulting molecular structures have never been compared in detail. Pellenq and his colleagues built a database of all these chemical formulations, finding that the optimum mixture was not the one typically used today, but rather a ratio of about 1.5.
As the ratio varies, he says, the molecular structure of the hardened material progresses from a tightly ordered crystalline structure to a disordered glassy structure. They found the ratio of 1.5 parts calcium for every one part silica to be "a magical ratio," Pellenq says, because at that point the material can achieve "two times the resistance of normal cement, in mechanical resistance to fracture, with some molecular-scale design."