This might allow for improved disaster preparedness. As the complex systems technique builds upon a mathematical comparison that can be utilised for any time series data, the approach could be
applied1 to extreme events in all sorts of complex systems. "Current weather forecast models cannot capture the
intensity2 of the most extreme rainfall events, yet these events are of course the most dangerous, and can have severe impacts for the local population, for example major floods or even landslides," says lead author Niklas Boers of the Potsdam Institute for Climate Impact Research (PIK). "Using complex networks analysis, we now found a way to predict such events in the South American Andes."
When the
monsoon3 hits South America from December to February, it brings moist warm air masses from the tropical Atlantic. Travelling westwards, these winds are blocked by the steep Andes mountains, several thousand metres high, and turn southwards. Under specific air pressure conditions, the warm air masses, loaded with moisture, meet cold and dry winds approaching from the south. This leads to abundant rainfall at high
elevations4, resulting in floods in the
densely5 populated foothills of the Bolivian and Argentinian Andes. "Surprisingly, and in contrast to widespread understanding so far, these events propagate against the southward wind direction," says Boers.
'Big Data' analysis of observational time series from satellites
The international team of scientists performed a 'Big Data' analysis of close to 50,000 high-resolution weather data time series dating from the 15 years since high quality satellite data became available, generated by NASA together with the Japan
Aerospace6 Exploration Agency. "We found that these huge rainfall clusters start off in the area around Buenos Aires, but then wander northwestward towards the Andes, where after two days they cause extreme rainfall events," says Boers. The new method makes it possible to correctly predict 90 percent of extreme rainfall events in the Central Andes occurring during conditions of the El Niño weather phenomenon when floods are generally more frequent, and 60 percent of those occurring under any other conditions.
"While the findings were hard to
derive7, local institutions can now apply them quite easily by using readily available data, which helps a lot," says co-author José A. Marengo of the National Institute for Space Research in Sao Paulo, Brazil. "Major rainfall events can result in floods which for instance in early 2007 alone produced estimated costs of more than 400 million US dollars in the region. It is now up to the
affected8 countries to adapt their disaster preparation planning."