Researchers from Columbia Engineering and the Georgia Institute of Technology report today that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric
generator1 and mechanosensation devices that are optically
transparent2, extremely light, and very bendable and stretchable. In a paper published online October 15, 2014, in Nature, research groups from the two institutions demonstrate the mechanical generation of electricity from the two-dimensional (2D) MoS2 material. The piezoelectric effect in this material had
previously3 been predicted theoretically.
Piezoelectricity is a well-known effect in which stretching or compressing a material causes it to generate an electrical voltage (or the reverse, in which an
applied4 voltage causes it to expand or contract). But for materials of only a few atomic thicknesses, no experimental observation of piezoelectricity has been made, until now. The observation reported today provides a new property for two-dimensional materials such as molybdenum disulfide, opening the potential for new types of mechanically controlled electronic devices.
"This material -- just a single layer of atoms -- could be made as a wearable device, perhaps integrated into clothing, to convert energy from your body movement to electricity and power wearable
sensors5 or medical devices, or perhaps supply enough energy to charge your cell phone in your pocket," says James Hone, professor of mechanical engineering at Columbia and co-leader of the research.
"Proof of the piezoelectric effect and piezotronic effect adds new functionalities to these two-dimensional materials," says Zhong Lin Wang, Regents' Professor in Georgia Tech's School of Materials Science and Engineering and a co-leader of the research. "The materials community is excited about molybdenum disulfide, and demonstrating the piezoelectric effect in it adds a new
facet6 to the material."