| ||||||||||||||||||||||||
Cuprates are materials with great promise for achieving superconductivity at higher temperatures (-120oC). This could mean low-cost electricity without energy loss. Intense research has focused on understanding the physics of cuprates in the hope that we can develop room-temperature superconductors. EPFL scientists have now used a cutting-edge technique to uncover the way cuprates become superconductors. Their work is published in Nature Communications. Conventional superconductors are materials that conduct electricity with no electrical resistance under temperatures nearing absolute zero (−273.15°C or 0 Kelvin). Under these conditions, the electrons of the material join up and form electron couples that are called "Cooper pairs," and in this form can flow without resistance. Generally, cooper pairs form at such low temperatures, and only when the superconductor's atoms vibrate and create an attractive force between electrons.
However, there is a class of superconductors where Cooper pairs do not form because atoms nudge them together. These superconductors are copper-based materials called "cuprates," and in normal temperatures they are actually electrical insulators1 and magnets.
The popularity of cuprates comes from the fact that they become superconductors at much higher temperatures than other materials: just over -123.15°C (150 Kelvin). This makes cuprates an excellent way towards everyday superconductivity. However, previous studies have suggested that cuprates do not become superconducting like other materials, which poses the question: how does superconductivity arise in cuprates?
A team of researchers led by Marco Grioni at EPFL has used a cutting-edge spectroscopic technique to explore the unique superconductivity of cuprates. The scientists used a technique called Resonant2 Inelastic X-ray Scattering3, which is used to investigate the electronic structure of materials. This high-resolution method was able to monitor what happens to the electrons of a cuprate sample as it turned into a superconductor.
"Normally, superconductors hate magnetism," says Grioni. "Either you have a good magnet or a good superconductor, but not both. Cuprates are very different and have really surprised everyone, because they are normally insulators and magnets, but they become superconducting when a few extra electrons are added by gently tweaking its chemical composition."
点击收听单词发音
|
||||||||||||||||||||||||
上一篇:量子物理学没我们想象的那么复杂 下一篇:过早接触抗抑郁药影响血清素传输 |
TAG标签:
energy
materials
electricity
- 发表评论
-
- 最新评论 进入详细评论页>>