A study of how climate change has
affected1 emperor
penguins3 over the last 30,000 years found that only three populations may have survived during the last ice age, and that the Ross Sea in Antarctica was likely the refuge for one of these populations. The Ross Sea is likely to have been a shelter for emperor penguins for thousands of years during the last ice age, when much of the rest of Antarctica was uninhabitable due to the amount of ice.
The findings, published today in the journal Global Change Biology, suggest that while current climate conditions may be
optimal4 for emperor penguins, conditions in the past were too extreme for large populations to survive.
A team of researchers, led by scientists from the universities of Southampton,
Oxford5, Tasmania and the Australian Antarctic Division, and supported in Antarctica by Adventure Network International, examined the
genetic6 diversity of modern and ancient emperor
penguin2 populations in Antarctica to estimate how they had been changing over time.
The iconic species is famed for its adaptations to its icy world, breeding on sea ice during the Antarctic winter when temperatures regularly drop below -30 °C. However, the team discovered that conditions were probably too harsh for emperor penguins during the last ice age and that the population was roughly seven times smaller than today and split up into three refugial populations.
Gemma Clucas, a PhD student from Ocean and Earth Science at the University of Southampton and one of the lead authors of the paper, explained: "Due to there being about twice as much sea ice during the last ice age, the penguins were unable to breed in more than a few locations around Antarctica. The distances from the open ocean, where the penguins feed, to the stable sea ice, where they breed, was probably too far. The three populations that did manage to survive may have done so by breeding near to polynyas -- areas of ocean that are kept free of sea ice by wind and currents."