On your car windshield, ice is a nuisance. But on an airplane, a wind turbine, an oil rig or power line, it can be downright dangerous. And removing it with the methods that are available today--usually chemical melting agents or labor-intensive scrapers and hammers--is difficult and expensive work. That could soon change thanks to a
durable1, inexpensive ice-repellent coating developed by University of Michigan researchers. Thin, clear and slightly rubbery to the touch, the spray-on formula could make ice slide off equipment, airplanes and car windshields with only the force of gravity or a gentle breeze. This could have major implications in industries like energy,
shipping3 and transportation, where ice is a constant problem in cold climates.
The new coating could also lead to big energy
savings4 in freezers, which today rely on complex and energy-hungry defrosting systems to stay frost-free. An ice-
repelling5 coating could do the same job with zero energy consumption, making household and industrial freezers up to 20 percent more efficient. The coating is
detailed6 in a new paper published in the journal Science Advances.
Made of a blend of common
synthetic7 rubbers, the formula marks a departure from earlier approaches that relied on making surfaces either very water-repellent or very slippery.
"Researchers had been trying for years to dial down ice adhesion strength with chemistry, making more and more water-repellent surfaces," said Kevin Golovin, a doctoral student in materials science and engineering. "We've discovered a new knob to turn, using physics to change the mechanics of how ice breaks free from a surface."
Led by Anish Tuteja, associate professor of materials science and engineering, the team
initially8 experimented with water-repelling surfaces as well, but found that they weren't effective at shedding ice. But during their experiments, they noticed something unexpected: rubbery coatings worked best for repelling ice, even when they weren't water-repellent. Eventually, they discovered that the ability to shed water wasn't important at all. The rubbery coatings
repelled9 ice because of a different phenomenon, called "interfacial cavitation."
Golovin explains that two
rigid10 surfaces--say, ice and your car windshield--can stick tightly together, requiring a great deal of force to break the bond between them. But because of interfacial cavitation, a solid material stuck to a rubbery surface behaves differently. Even a small amount of force can
deform11 the rubbery surface, breaking the solid free.
"Nobody had explored the idea that rubberiness can reduce ice adhesion," Tuteja said. "Ice is frozen water, so people assumed that ice-repelling surfaces had to also
repel2 water. That was very limiting."