What could human engineers possibly learn from the lowly slime mold粘液菌? Reliable, cost-efficient network construction, apparently1: a recent experiment suggests that Physarum polycephalum多头绒泡菌, a gelatinous胶状的 fungus-like mold霉菌,模子, might actually lead the way to improved technological2 systems, such as more robust3 computer and mobile communication networks. This revelation comes after a team of Japanese and British researchers observed that the slime mold connected itself to scattered4 food sources in a design that was nearly identical to Tokyo's rail system.
The related report will be published by the journal Science on Friday, 22 January. Science is the journal of AAAS, the nonprofit非赢利的 science society.
Atsushi Tero from Hokkaido University in Japan, along with colleagues elsewhere in Japan and the United Kingdom, placed oat燕麦 flakes5 on a wet surface in locations that corresponded to the cities surrounding Tokyo, and allowed the Physarum polycephalum mold to grow outwards6 from the center. They watched the slime mold self-organize, spread out, and form a network that was comparable in efficiency, reliability7, and cost to the real-world infrastructure8基础设施,公共设施 of Tokyo's train network.
"Some organisms grow in the form of an interconnected network as part of their normal foraging9 strategy to discover and exploit new resources," Tero writes in the report. "Physarum is a large, single-celled amoeboid变形虫样的 organism that forages10 for patchily不规则地,散落地 distributed分散式的 food sources... [It] can find the shortest path through a maze迷宫,迷惑 or connect different arrays of food sources in an efficient manner with low total length yet short average minimum distance between pairs of food sources, with a high degree of fault tolerance12 to accidental disconnection."
The researchers knew that capturing the essence of this biological system in simple rules could be useful to inform the construction of self-organizing and cost-efficient networks in the real world. They captured the core mechanisms13 needed by the slime mold to connect its food sources in an efficient manner and incorporated them into a mathematical model.
Since the slime mold has been subjected to countless14 rounds of evolutionary15 selection, this formula based on its feeding habits might provide a route to more efficient and adaptive network designs for transportation and communication.
In a related Perspective, Wolfgang Marwan of Otto von Guericke University in Germany writes, "The model captures the basic dynamics16 of network adaptability17 through interaction of local rules, and produces networks with properties comparable to or better than those of real-world infrastructure networks... The work of Tero and colleagues provides a fascinating and convincing example that biologically inspired pure mathematical models can lead to completely new, highly efficient algorithms算法 able to provide technical systems with essential features of living systems, for applications in such areas as computer science."
Tero and the other researchers say that their model provides a starting point for improving efficiency and decreasing costs for self-organized networks without centralized control, like remote sensor遥感器 arrays, mobile ad hoc特别的,临时 networks, and wireless19 mesh20 networks网状网络.
The slime mold just did what came naturally.