| |||||
2.设序列为{1,4},有两个样本则:(2-1)/4 商0,余数1 1st=第1个数*3/4+第2个数*1/4=1.75 3.设序列为{1,5,7},有三个样本则:(3-1)/4 商0,余数2 1st=第1个数*2/4+第2个数*2/4=3 4.设序列为{1,3,6,10},四个样本:(4-1)/4 商0,余数2 1st=第1个数*1/4+第2个数*3/4=2.5 5.其他类推! 因为3rd与1rd的位置对称,这是可以将序列从大到小排(即倒过来排),再用1rd的公式即可求得: 例(各序列同上各列,只是逆排): 1.序列{5},3rd=5 2.{4,1},3rd=4*3/4+1*1/4=3.25 3.{7,5,1},3rd=7*2/4+5*2/4=6 4.{10,6,3,1},3rd=10*1/4+6*3/4=7 ETS明确规定Percentile是一定要求的一个统计量,不知道有没有G友遇到过关于Percentile的数学题,因为Percentile的计算比较复杂,所以我在此对Percentile的求法详述,以方便G友: Percentile: percent below用概念来说没什么用,而且易让人糊涂,所以在此我归纳出一个公式以供G友参考。 设一个序列供有n个数,要求(k%)的Percentile: (1)从小到大排序,求(n-1)*k%,记整数部分为i,小数部分为j (2)所求结果=(1-j)*第(i+1)个数+j*第(i+2)个数
|
|||||
TAG标签:
- 发表评论
-
- 最新评论 进入详细评论页>>